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Abstract

When treatment is endogenous, selection bias might arise if unobserved factors simul-
taneously influence both the selection and outcome process. A possible cure in the case
of cross-sectional data is to explicitly account for this error correlation and estimate the
covariance matrix of the two processes. This is known as endogenous switching regression.
The R package OPSR introduced in this article provides an easy-to-use, fast and memory
efficient interface to ordinal probit switching regression, accounting for self-selection into
an ordinal treatment. It handles log-transformed outcomes which need special considera-
tion when computing conditional expectations and thus treatment effects.

Keywords: ordinal probit switching regression, endogenous switching regression, Heckman
selection, selection bias, treatment effect, R.

1. Introduction

The goal of the program evaluation literature is to estimate the effect of a treatment program
(e.g., a new policy, technology, medical treatment, or agricultural practice) on an outcome. To
evaluate such a program, the “treated” are compared to the “untreated”. In an experimental
setting, the treatment can be assigned by the researcher. However, in an observational setting,
the treatment is not always exogeneously prescribed but rather self-selected. This gives rise
to a selection bias when unobserved factors influencing the treatment adoption also influence
the outcome (also known as selection on unobservables). Simple group comparison no longer
yield an unbiased estimate of the treatment effect. In more technical terms, the counterfactual
outcome of the treated (“if they had not been treated”) does not necessarily correspond to
the factual outcome of the untreated. For example, cyclists riding without a helmet (the
“untreated”) might have a risk-seeking tendency. We therefore potentially overestimate the
benefit of wearing a helmet if we compare the accident (severity) rate of the two groups.
Risk-seeking is not readily measured and it is easy to imagine that it becomes part of the
error in applied research and thus leading cause of a selection bias.
To properly account for the selection bias, various techniques exist, both for longitudinal
and cross-sectional data. In the first case, difference in differences is a widely adopted
measure. In the latter case, instrumental variables, matching propensity scores, regression-
discontinuity design, and the endogenous switching regression model have been applied (Wang
and Mokhtarian 2024). The latter method is particularly well-suited to correct for selection
on unobservables (unlike other methods which only address and correct for selection on ob-
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servables).
The seminal work by Heckman (1979) proposed a two-part model to address the selection
bias that often occurs when modelling a continuous outcome which is only observable for a
subpopulation. A very nice exposition of this model is given in Cameron and Trivedi (2005,
Chapter 16). The classical Heckman model consists of a probit equation and continuous
outcome equation. A natural extension is then switching regression, where the population
is partitioned into different groups (regimes) and separate parameters are estimated for the
continuous outcome process of each group. This model is originally known as the Roy model
(Cameron and Trivedi 2005) or Tobit 5 model (Amemiya 1985). These classical models (the
Tobit models for truncated, censored or interval data and their extensions) are implemented in
various environments for statistical computing and in R’s (R Core Team 2017) sampleSelection
package (Toomet and Henningsen 2008).
Many different variants can then be derived by either placing different distributional assump-
tions on the errors and/or how the latent process manifests into observed outcomes (i.e., the
dependent variables can be of various types, such as binary, ordinal, censored, or continuous)
more generally known as conditional mixed-process (CMP) models. CMP models comprise
a broad family involving two or more equations featuring a joint error distribution assumed
to be multivariate normal. The Stata (StataCorp 2023) command cmp (Roodman 2011) can
fit such models. The variant at the heart of this paper is an ordinal probit switching regres-
sion (OPSR) model, with an ordered treatment and continuous outcome. Throughout the
text we use the convention that OPSR refers to the general methodology, while OPSR refers
specifically to the package.
OPSR is available as a Stata command, oheckman (Chiburis and Lokshin 2007), which how-
ever, does not allow distinct specifications for the continuous outcome processes (i.e., the same
explanatory variables must be used for all treatment groups). The relatively new R package
switchSelection (Potanin 2024) allows to estimate multivariate and multinomial sample se-
lection and endogenous switching models with multiple outcomes. These models are systems
of ordinal, continuous and multinomial equations and thus nest OPSR as a special case.
OPSR is tailored to one particular method, easy to use (understand, extend and maintain),
fast and memory efficient. It handles log-transformed continuous outcomes which need spe-
cial consideration for the computation of conditional expectations. It obeys to R’s implicit
modeling conventions (by extending the established generics such as summary(), predict(),
update(), anova() among others) and produces production-grade output tables. This work
generalizes the learnings from Wang and Mokhtarian (2024) and makes the OPSR method-
ology readily available. The mathematical notation presented here translates to code almost
verbatim which hopefully serves a pedagogical purpose for the curious reader.

2. Model and software
In the following, we outline the ordinal probit switching regression model as well as list all the
key formulas underlying the software implementation. OPSR follows the R-typical formula
interface to a workhorse fitter function. Its architecture is detailed after the mathematical
part.
As alluded, OPSR is a two-step model: One process governs the ordinal outcome and separate
processes (for each ordinal outcome) govern the continuous outcomes. The ordinal outcome
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can also be thought of as a regime or treatment. In the subsequent exposition, we will refer
to the two processes as selection and outcome process.
We borrow the notation from Wang and Mokhtarian (2024) where also all the derivations are
detailed. For a similar exhibition, Chiburis and Lokshin (2007) can be consulted. Individual
subscripts are suppressed throughout, for simplicity.
Let Z be a latent propensity governing the selection outcome

Z = W γ + ϵ, (1)

where W represents the vector of attributes of an individual, γ is the corresponding vector
of parameters and ϵ ∼ N (0, 1) a normally distributed error term.
As Z increases and passes some unknown but estimable thresholds, we move up from one
ordinal treatment to the next higher level

Z = j if κj−1 < Z ≤ κj , (2)

where Z is the observed ordinal selection variable, j = 1, . . . , J indexes the ordinal levels of
Z, and κj are the thresholds (with κ0 = −∞ and κJ = ∞). Hence, there are J − 1 thresholds
to be estimated. The probability that an individual self-selects into treatment group j is

P[Z = j] = P[κj−1 < Z ≤ κj ]
= P[κj−1 − W γ < ϵ ≤ κj − W γ]
= Φ(κj − W γ) − Φ(κj−1 − W γ).

(3)

The outcome model for the jth treatment group is expressed as

yj = Xjβj + ηj , (4)

where yj is the observed continuous outcome, Xj the vector of observed explanatory variables
associated with the jth outcome model, βj is the vector of associated parameters, and ηj ∼
N (0, σ2) is a normally distributed error term. At this point it should be noted that Xj and
W may share some explanatory variables but not all, due to identification problems otherwise
(Chiburis and Lokshin 2007).
The key assumption of OPSR is now that the errors of the selection and outcome models are
jointly multivariate normally distributed
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, (5)

where ρj represents the correlation between the errors of the selection model (ϵ) and the
jth outcome model (ηj). If the covariance matrix should be diagonal (i.e., no error correlation),
no selection-bias exists and the selection and outcome models can be estimated separately.
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As shown in Wang and Mokhtarian (2024), the log-likelihood of observing all individuals
self-selecting into treatment j and choosing continuous outcome yj can be expressed as

ℓ(θ | W , Xj) =
J∑

j=1

∑
{j}

{
ln
[

1
σj

ϕ

(
yj − Xjβj

σj

)]
+

ln

Φ

σj(κj − W γ) − ρj(yj − Xjβj)
σj

√
1 − ρ2

j

− Φ

σj(κj−1 − W γ) − ρj(yj − Xjβj)
σj

√
1 − ρ2

j

 (6)

where ∑{j} means the summation of all the cases belonging to the jth selection outcome,
ϕ(·) and Φ(·) are the density and cumulative distribution function of the standard normal
distribution.
The conditional expectation can be expressed as

E[yj | Z = j] = Xjβj + E[ηj | κj−1 − W γ < ϵ ≤ κj − W γ]

= Xjβj − ρjσj
ϕ(κj − W γ) − ϕ(κj−1 − W γ)
Φ(κj − W γ) − Φ(κj−1 − W γ) ,

(7)

where the fraction is the ordered probit switching regression model counterpart to the in-
verse Mills ratio (IMR) term of a binary switching regression model. We immediately see,
that regressing Xj on yj leads to an omitted variable bias if ρj ̸= 0 which is the root cause
of the selection bias. However, the IMR can be pre-computed based on an ordinal probit
model and then included in the second stage regression, which describes the Heckman cor-
rection (Heckman 1979). It should be warned, that since the Heckman two-step procedure
includes an estimate in the second step regression, the resulting OLS standard errors and
heteroskedasticity-robust standard errors are incorrect (Greene 2002).
To obtain unbiased treatment effects, we must further evaluate the “counterfactual outcome”,
which reflects the expected outcome under a counterfactual treatment (i.e., for j′ ̸= j)

E[yj′ | Z = j] = Xj′βj′ + E[ηj′ | κj−1 − W γ < ϵ ≤ κj − W γ]

= Xj′βj′ − ρj′σj′
ϕ(κj − W γ) − ϕ(κj−1 − W γ)
Φ(κj − W γ) − Φ(κj−1 − W γ) .

(8)

As it is usual to log-transform the continuous outcome in regression analysis, we have to note,
that in such cases the Equations 7-8 provide the conditional expectation of the log-transformed
outcome. Therefore, we need to back-transform ln(yj + 1) which yields

E[yj | Z = j] = exp
(

Xjβj +
σ2

j

2

)[
Φ(κj − W γ − ρjσj) − Φ(κj−1 − W γ − ρjσj)

Φ(κj − W γ) − Φ(κj−1 − W γ)

]
− 1 (9)

for the factual case, and

E[yj′ | Z = j] = exp
(

Xj′βj′ +
σ2

j′

2

)[
Φ(κj − W γ − ρj′σj′) − Φ(κj−1 − W γ − ρj′σj′)

Φ(κj − W γ) − Φ(κj−1 − W γ)

]
− 1

(10)
for the counterfactual case (Wang and Mokhtarian 2024).
This concludes the mathematical treatment and we briefly outline OPSR’s architecture which
can be conceptualized as follows:
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• We provide the usual formula interface to specify a model. To allow for multiple parts
and multiple responses, we rely on the Formula package (Zeileis and Croissant 2010).

• After parsing the formula object, checking the user inputs and computing the model
matrices, the Heckman two-step estimator is called in opsr_2step() to generate rea-
sonable starting values.

• These are then passed together with the data to the basic computation engine opsr.fit().
The main estimates are retrieved using maximum likelihood estimation by passing the
log-likelihood function loglik_cpp() (Equation 6) to maxLik() from the maxLik pack-
age (Henningsen and Toomet 2011).

• All the above calls are nested in the main interface opsr() which returns an object of
class ‘opsr’. Several methods then exist to post-process this object as illustrated below.

The likelihood function loglik_cpp() is implemented in C++ using Rcpp (Eddelbuettel and
Balamuta 2018) and relying on the data types provided by RcppArmadillo (Eddelbuettel and
Sanderson 2014). Parallelization is available using OpenMP. This makes OPSR both fast and
memory efficient (as data matrices are passed by reference).

3. Illustrations
We first illustrate how to specify a model using Formula’s extended syntax and simulated
data. Then the main functionality of the package is demonstrated. We conclude this section
by demonstrating some nuances, reproducing the core model of Wang and Mokhtarian (2024).
Let us simulate date from an OPSR process with three ordinal outcomes and distinct design
matrices W and X (where X = Xj ∀j) by

R> sim_dat <- opsr_simulate()
R> dat <- sim_dat$data
R> head(dat)

ys yo xs1 xs2 xo1 xo2
1 2 -0.5492 -0.702 -0.733 2.79248 -0.016
2 3 4.0957 -0.167 2.164 0.47481 -1.226
3 3 4.8617 0.533 1.641 0.00991 -1.524
4 2 1.1602 0.284 -1.175 0.19197 0.676
5 2 2.4321 -0.158 1.187 0.19337 1.178
6 2 0.0966 -1.236 0.935 1.46857 0.735

where ys is the selection outcome (or treatment group), yo the continuous outcome and xs
respectively xo the corresponding explanatory variables.
Models are specified symbolically. A typical model has the form ys | yo ~ terms_s |
terms_o1 | terms_o2 | ... where the | separates the two responses and process spec-
ifications. If the user wants to specify the same process for all continuous outcomes, two
processes are enough (ys | yo ~ terms_s | terms_o). Hence the minimal opsr() inter-
face call reads
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R> fit <- opsr(ys | yo ~ xs1 + xs2 | xo1 + xo2, data = dat,
+ printLevel = 0)

where printLevel = 0 omits working information during maximum likelihood iterations.
As usual, the fitter function does the bare minimum model estimation while inference is
performed in a separate call

R> summary(fit)

Call:
opsr(formula = ys | yo ~ xs1 + xs2 | xo1 + xo2, data = dat, printLevel = 0)

Meta information:
BFGS maximization, 93 iterations
Return code 0: successful convergence
Runtime: 0.359 secs
Log-Likelihood: -1990
AIC: 4019
BIC: 4112
Number of regimes: 3
Number of observations: 1000 (176, 515, 309)
Estimated parameters: 19

Estimates:
Estimate Std. error t value Pr(> t)

kappa1 -2.0572 0.0960 -21.43 < 2e-16 ***
kappa2 1.0365 0.0701 14.79 < 2e-16 ***
s_xs1 1.0291 0.0576 17.87 < 2e-16 ***
s_xs2 1.5695 0.0760 20.65 < 2e-16 ***
o1_(Intercept) 0.8456 0.1045 8.09 6.0e-16 ***
o1_xo1 2.0776 0.0683 30.42 < 2e-16 ***
o1_xo2 1.1581 0.0649 17.84 < 2e-16 ***
o2_(Intercept) 0.9886 0.0487 20.28 < 2e-16 ***
o2_xo1 -0.9889 0.0505 -19.59 < 2e-16 ***
o2_xo2 1.5572 0.0465 33.50 < 2e-16 ***
o3_(Intercept) 1.0269 0.0806 12.74 < 2e-16 ***
o3_xo1 1.5376 0.0737 20.87 < 2e-16 ***
o3_xo2 -1.9998 0.0604 -33.10 < 2e-16 ***
sigma1 1.0055 0.0530 18.99 < 2e-16 ***
sigma2 1.1066 0.0366 30.27 < 2e-16 ***
sigma3 1.1195 0.0443 25.28 < 2e-16 ***
rho1 0.0222 0.1178 0.19 0.85039
rho2 0.4050 0.0665 6.09 1.2e-09 ***
rho3 0.2729 0.0815 3.35 0.00081 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Wald chi2 (null): 4982 on 8 DF, p-value: < 0
Wald chi2 (rho): 48 on 3 DF, p-value: < 0

The presentation of the model results is fairly standard and should not warrant further ex-
planation with the following exceptions

1. The number of regimes along absolute counts are reported.

2. Coefficient names are based on the variable names as passed to the formula specification,
except that "s_" is prepended to the selection coefficients, "o[0-9]_" to the outcome
coefficients and the structural components "kappa", "sigma", "rho" (aligning with
the letters used in Equation 6) are hard-coded (but can be over-written).

3. The coefficients table reports robust standard errors based on the sandwich covariance
matrix as computed with help of the sandwich package (Zeileis 2006). rob = FALSE
reports conventional standard errors.

4. Two Welch-tests are conducted. One, testing the null that all coefficients of explanatory
variables are zero and two, testing the null that all error correlation coefficients (ρ) are
zero. If the latter is rejected, selection bias is not an issue.

A useful benchmark is always the null model with structural parameters only. The null model
can be derived from an ‘opsr’ model fit as follows

R> fit_null <- opsr_null_model(fit, printLevel = 0)

A model can be updated as usual

R> fit_intercept <- update(fit, . ~ . | 1)

where we have removed all the explanatory variables from the outcome processes.
Several models can be compared with a likelihood-ratio test using

R> anova(fit_null, fit_intercept, fit)

Likelihood Ratio Test

Model 1: ~Nullmodel
Model 2: ys | yo ~ xs1 + xs2 | 1
Model 3: ys | yo ~ xs1 + xs2 | xo1 + xo2

logLik Df Test Restrictions Pr(>Chi)
1 -3308 8
2 -2803 13 1011 5 <2e-16 ***
3 -1990 19 1625 6 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1



8 OPSR: Ordinal Probit Switching Regression in R

If only a single object is passed, then the model is compared to the null model. If more than
one object is specified a likelihood ratio test is conducted for each pair of neighboring models.
As expected, both tests reject the null.
Models can be compared side-by-side using the texreg package (Leifeld 2013), which also
allows the user to build production-grade tables as illustrated later.

R> texreg::screenreg(list(fit_null, fit_intercept, fit),
+ include.pseudoR2 = TRUE, include.R2 = TRUE, single.row = TRUE)

==============================================================================
Model 1 Model 2 Model 3

------------------------------------------------------------------------------
kappa1 -0.93 (0.05) *** -2.06 (0.10) *** -2.06 (0.10) ***
kappa2 0.50 (0.04) *** 1.03 (0.07) *** 1.04 (0.07) ***
sigma1 2.66 (0.14) *** 2.66 (0.13) *** 1.01 (0.05) ***
sigma2 2.18 (0.07) *** 2.19 (0.07) *** 1.11 (0.04) ***
sigma3 2.69 (0.11) *** 2.69 (0.11) *** 1.12 (0.04) ***
rho1 0.00 (0.12) 0.02 (0.12)
rho2 0.27 (0.07) *** 0.41 (0.07) ***
rho3 0.05 (0.10) 0.27 (0.08) ***
s_xs1 1.03 (0.06) *** 1.03 (0.06) ***
s_xs2 1.58 (0.08) *** 1.57 (0.08) ***
o1_(Intercept) 0.71 (0.21) *** 0.72 (0.31) * 0.85 (0.10) ***
o1_xo1 2.08 (0.07) ***
o1_xo2 1.16 (0.06) ***
o2_(Intercept) 0.92 (0.10) *** 0.97 (0.10) *** 0.99 (0.05) ***
o2_xo1 -0.99 (0.05) ***
o2_xo2 1.56 (0.05) ***
o3_(Intercept) 1.00 (0.15) *** 0.93 (0.20) *** 1.03 (0.08) ***
o3_xo1 1.54 (0.07) ***
o3_xo2 -2.00 (0.06) ***
------------------------------------------------------------------------------
AIC 6632.43 5631.68 4018.70
BIC 6671.69 5695.48 4111.94
Log Likelihood -3308.21 -2802.84 -1990.35
Pseudo R^2 (EL) 0.08 0.53 0.53
Pseudo R^2 (MS) -0.00 0.49 0.49
R^2 (total) 0.00 0.01 0.81
R^2 (1) 0.01 0.01 0.86
R^2 (2) 0.00 0.03 0.76
R^2 (3) 0.00 0.00 0.83
Num. obs. 1000 1000 1000
==============================================================================
*** p < 0.001; ** p < 0.01; * p < 0.05

Finally, the key interest of an OPSR study almost certainly is the estimation of treatment
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effects which relies on (counterfactual) conditional expectations as already noted in the math-
ematical exposition.

R> p1 <- predict(fit, group = 1, type = "response")
R> p2 <- predict(fit, group = 1, counterfact = 2, type = "response")

where p1 is the result of applying Equation 7 and p2 is the counterfactual outcome resulting
from Equation 8. The following type arguments are available

• type = "response": Predicts the continuous outcome according to the Equations ref-
erenced above.

• type = "unlog-response": Predicts the back-transformed response if the continuous
outcome was log-transformed according to Equations 9-10.

• type = "prob": Returns the probability vector of belonging to group.

• type = "mills": Returns the inverse Mills ratio.

Elements are NA_real_ if the group does not correspond to the observed regime (selection
outcome). This ensures consistent output length.
Now that the user understands the basic workflow, we illustrate some nuances by reproducing
a key output of Wang and Mokhtarian (2024) where they investigate the treatment effect of
telework on weekly vehicle miles driven. The data is attached, documented (?telework_data)
and can be loaded by

R> data("telework_data", package = "OPSR")

A basic boxplot of the response variable against the three teleworking status is displayed
in Figure 1. By simply looking at the data descriptively, we might prematurely conclude
telework reduces vehicle miles driven. However, the whole value proposition of OPSR (and
for models in general) is that we really are interested in a counterfactual. If the teleworkers
self-select, the counterfactual is not simply the group average. More prosaically, if the usual
telewokers (UTW) would choose to be non-usual teleworkers (NUTW), they might travel
more or less than the actual NUTWs.

daniehei: Maybe do this discussion and boxplot in Section 4 and omit here.

The final model specification reads

R> f <-
+ twing_status | vmd_ln ~
+ edu_2 + edu_3 + hhincome_2 + hhincome_3 + flex_work + work_fulltime +
+ twing_feasibility + att_proactivemode + att_procarowning + att_wif +
+ att_proteamwork + att_tw_effective_teamwork + att_tw_enthusiasm +
+ att_tw_location_flex |
+ female + age_mean + age_mean_sq + race_black + race_other + vehicle +
+ suburban + smalltown + rural + work_fulltime + att_prolargehouse +
+ att_procarowning + region_waa |
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Figure 1: Log vehicle miles driven for different teleworking status.

+ edu_2 + edu_3 + suburban + smalltown + rural + work_fulltime +
+ att_prolargehouse + att_proactivemode + att_procarowning |
+ female + hhincome_2 + hhincome_3 + child + suburban + smalltown +
+ rural + att_procarowning + region_waa

and the model can be estimated by

R> start_default <- opsr(f, telework_data, .get2step = TRUE)
R> fit <- opsr(f, telework_data, start = start, method = "NM", iterlim = 50e3,
+ printLevel = 0)

where we demonstrate that

1. Default starting values as computed by the Heckman two-step procedure can be re-
trieved.

2. start values can be overridden (we have hidden the start vector here for brevity).
If the user wishes to pass start values manually, some minimal conventions have to be
followed as documented in ?opsr_check_start.

3. Alternative maximization methods (here “Nelder-Mead”) can be used (as in the original
paper).

With help of the texreg package, production-grade tables (in various output formats) can be
generated with ease.

R> texreg::texreg(
+ fit, beside = TRUE, include.structural = FALSE,
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NTWer (535) NUTWer (322) UTWer (727)
Intercept 3.64 (0.27)∗∗∗ 2.49 (0.37)∗∗∗ 2.38 (0.26)∗∗∗

Female −0.21 (0.10)∗ −0.36 (0.11)∗∗∗

Age 0.01 (0.00)∗

Age squared −0.00 (0.00)
Race (ref: white)

Black −0.40 (0.24)
Other races −0.06 (0.18)

Education (ref: high school or less)
Some college 0.15 (0.33)
Bachelor’s degree or higher 0.62 (0.31)∗

Annual household income (ref: less than $50,000)
$50,000 to $99,999 0.47 (0.23)∗

$100,000 or more 0.31 (0.23)
Number of children 0.18 (0.06)∗∗

Number of vehicles 0.12 (0.05)∗

Residential location (ref: urban)
Suburban 0.07 (0.15) 0.45 (0.17)∗∗ 0.28 (0.14)∗

Small town 0.47 (0.18)∗∗ 0.19 (0.29) 0.29 (0.28)
Rural 0.60 (0.23)∗∗ 0.81 (0.31)∗∗ 0.88 (0.34)∗∗

Full time worker 0.45 (0.13)∗∗∗ 0.69 (0.17)∗∗∗

Attitudes
Pro-large-house 0.18 (0.05)∗∗∗ 0.18 (0.08)∗

Pro-car-owning 0.14 (0.07)∗ 0.16 (0.09) 0.25 (0.06)∗∗∗

Pro-active-mode −0.18 (0.08)∗

AIC 7191.35 7191.35 7191.35
BIC 7491.94 7491.94 7491.94
Log Likelihood −3539.67 −3539.67 −3539.67
R2 (total) 0.24 0.24 0.24
R2 (1) 0.28 0.28 0.28
R2 (2) 0.23 0.23 0.23
R2 (3) 0.21 0.21 0.21
Num. obs. 1584 1584 1584
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Table 1: Replica of Wang and Mokhtarian (2024), Table 3.

+ include.selection = FALSE, include.R2 = TRUE,
+ custom.model.names = custom.model.names,
+ custom.coef.names = custom.coef.names,
+ single.row = TRUE,
+ reorder.coef = reorder.coef, groups = groups, scalebox = 0.86,
+ booktabs = TRUE, dcolumn = TRUE, use.packages = FALSE, float.pos = "t!",
+ caption = "Replica of \\cite{Wang+Mokhtarian:2024}, Table 3.",
+ label = "tab:wang-replica"
+ )

Dot arguments (...) passed to texreg() (or similar functions) are forwarded to a S4 method
extract() which extracts the variables of interest from a model fit (see also ?extract.opsr).
We demonstrate here that
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1. The structural coefficients (κ, σ and ρ) and coefficients belonging to the selection compo-
nent can be omitted (include.structural = FALSE, include.selection = FALSE).

2. The model components can be printed side-by-side (beside = TRUE).

3. Additional goodness-of-fit indicators can be included (include.R2 = TRUE).

4. The output formatting can be controlled flexibly, by reordering, renaming and grouping
coefficients (the fiddly but trivial details are hidden here for brevity).

4. Case study

daniehei: TU+ case study. Intended to demonstrate how to use OPSR in a real-world
example. Don’t comment on what a function does but interpret the output substantively.

5. Summary and discussion

Computational details
The results in this paper were obtained using R 4.4.2 with the OPSR 0.1.2.9001 package. R
itself and all packages used are available from the Comprehensive R Archive Network (CRAN)
at https://CRAN.R-project.org/.
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